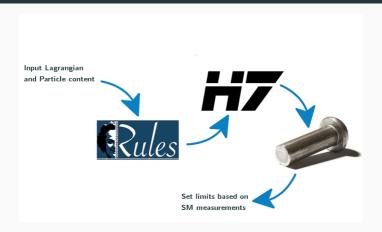
Constraints on new theories using Rivet (Contur)

J. Butterworth, D. Grellscheid(IPPP), M. Krämer(Aachen), D. Yallup July 19, 2016

ATLAS Statistics forum, P&P Week



Introduction and Aims

- Goal: Create a flexible framework to confront BSM theories with precision SM
 measurements OR quantify what room the errors on SM measurements leave for
 new physics.
- Requirements:
 - Flexible physics input, desire a framework capable of applying to as broad a class of models as possible
 - Utilize existing pheno tools where possible, rich landscape of mature tools available, utilise this!
 - Robust statistical testing framework, constrained inputs, machinery can be lightweight.

White paper: arXiv:1606.05296
HepForge site (Work in progress): contur.hepforge.org

Building a framework

- Feynrules Mathematica package, generate Feynman rules from input Lagrangian
- Herwig 7 Event Generator, Feynman rules to fully hadronized final state
- Rivet Library of analyses, plug and play ATLAS and CMS measurements. (Data taken from records in HepData)

Illustrate process by considering a simple model.

Analysis base

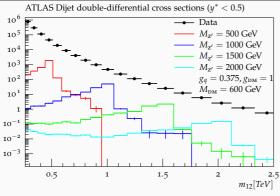
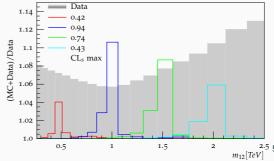

Contur Category	Rivet/Inspire ID	Rivet description
ATLAS 7 Jets	ATLAS_2014_I1325553 [28]	Measurement of the inclusive jet cross-section
	ATLAS_2014_I1268975 [30]	High-mass dijet cross section
	ATLAS_2014_I1326641 [32]	3-jet cross section
	ATLAS_2014_I1307243 [31]	Measurements of jet vetoes and azimuthal decorrelations in dijet events
CMS 7 Jets	CMS_2014_I1298810 [29]	Ratios of jet pT spectra, which relate to the ratios of inclusive, differential jet cross sections
ATLAS 8 Jets	ATLAS_2015_I1394679 [34]	Multijets at 8 TeV
ATLAS 7 Z Jets	ATLAS_2013_I1230812 [35]	Z + jets
CMS 7 Z Jets	CMS_2015_I1310737 [38]	Jet multiplicity and differential cross-sections of $Z+{ m jets}$ events
CMS 7 W Jets	CMS_2014_I1303894 [37]	Differential cross-section of W bosons $+$ jets
ATLAS 7 W jets	ATLAS_2014_I1319490 [36]	W + jets
ATLAS 7 Photon Jet	ATLAS_2013_I1263495 [42]	Inclusive isolated prompt photon analysis with 2011 LHC data
	ATLAS_2012_I1093738 [44]	Isolated prompt photon $+$ jet cross-section
CMS 7 Photon Jet	CMS_2014_I1266056 [45]	Photon + jets triple differential cross-section
ATLAS 7 Diphoton	ATLAS_2012_I1199269 [43]	Inclusive diphoton $+X$ events
ATLAS 7 ZZ	ATLAS_2012_I1203852 [39]	Measurement of the $ZZ(*)$ production cross-section
ATLAS W/Z gamma	ATLAS_2013_I1217863 [40]	W/Z gamma production

Table 1: Table of all Rivet routines currently included in the limit-setting scan. With the one indicated exception, they are all based on 7 TeV data.

Derive sensitivity from as broad a range of SM measurements as available in HepData/Rivet. Sensitivity in as many final states/variables as possible


Note: Catagory defines non overlapping signatures, safe to combine into single metrics, more later

Examining the Rivet output

Default Rivet output, seek to quantify to what extent the measured values and errors exclude these simulations. Working under the assumption that what has been measured by the data points is only Standard Model diagrams

Stack simulated signal on data points, here display ratio. Legend displaying the CL of exclusion obtained from the least compatible bin.

Statistical Analysis

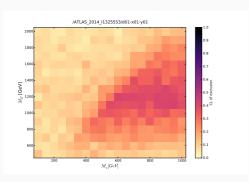
- Lean heavily on Cowan et al. arXiv:1007.1727. Asymptotic formulae for likelihood-based tests of new physics.
- Construct Likelihood function for a single bin by bin test of:

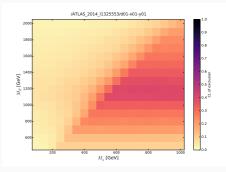
$$L(\mu, b, \sigma_b, s) = \frac{(\mu s + b)^n}{n!} \exp\left(-(\mu s + b)\right) \times \frac{1}{\sqrt{2\pi}\sigma_b} \exp\left(-\frac{(m - b)^2}{2\sigma_b^2}\right) \times \frac{(s)^k}{k!} \exp\left(-s\right)$$

- ullet Poisson event count: μ signal strength parameter, modulating between tested hypothesis.
- Gaussian encoding background error: σ_b , Uncertainty in b count taken from Rivet/HepData as $1~\sigma$ error on a Gaussian (uncertainties quoted as the combination of statistical and systematics uncertainties in quadrature. Typically the systematic uncertainty dominates).
- ullet Poisson term describing statistical MC error on simulated BSM signal count, s
- Note that in the absence of a separate simulation of the background, take [n]=[m]=b and [k]=s.

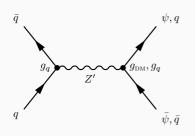
6

Statistical Analysis - cont.


- Test each bin of each plot of each analysis, selecting the most significant bins to combine into a total CL of exclusion (a simple extension of the Likelihood function to a product of the bins with the most prominent deviation). Note: guiding principal, construct combined CL limit from statistically independent counts.
- Issues:
 - Methodology aims to build maximal safe limit out of available info. More advanced treatment possible?
 - Correlations between systematic errors between final states and datasets not a well posed question. Data certainly not available to account for this currently.
 - Currently rely on Differential xs measurements, need an event COUNT

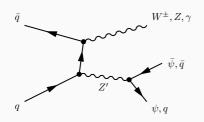

 multiply by Integrated Lumi, possible to test additional metrics?

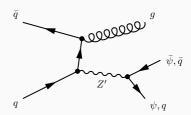
Statistical Analysis - Approximate distributions


- \bullet Testing framework consists of python scripts, constructing the covariance matrix to extract variance in μ
 - \implies Construct \tilde{q}_{μ} test statistic set one sided upper limit on confidence in full signal strength hypothesis
- Rely on asymptotic limit formula, well founded for current depth of scans, need to reintroduce MC tester...

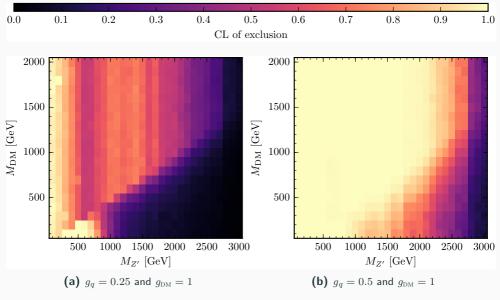
ALERT, these are old, form/presentation different, left MC, right asymptotic formulae

Simplified Dark Matter Model

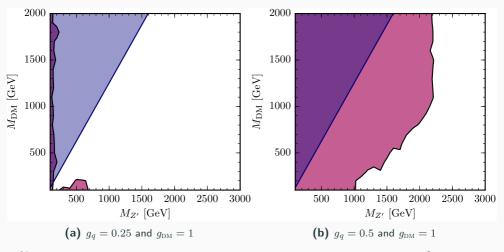



Simplified Dark Matter model, enable a description of weakly coupled, low mass resonances.

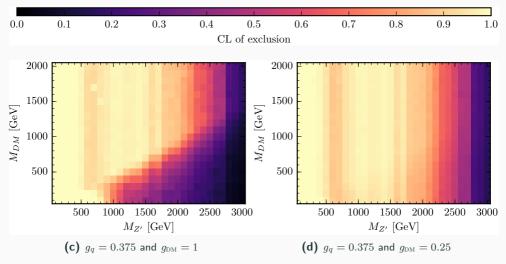
$$\mathcal{L} \supset g_{\scriptscriptstyle \mathrm{DM}} \overline{\psi} \gamma_{\mu} \gamma_5 \psi Z^{\prime \mu} + g_q \sum_q \overline{q} \gamma_{\mu} q Z^{\prime \mu}$$


Vector mediator to dark sector, purely vector coupling to SM, purely axial coupling to DM.

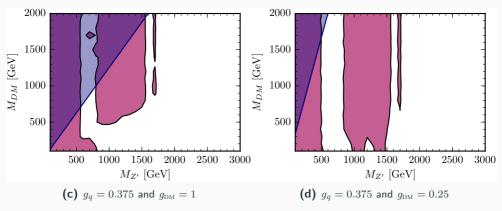
Model introduces DM candidate, ψ , dark . Experimental signatures hence typically rely on 'Mono-X' style final states at colliders. Probe sensitivity in detecting decay of mediator back to SM final states.



Results - heatmaps


Heatmap showing two scenarios: a - weakly coupled, b - strongly coupled

Results - 95% CL Contours


95% CL contour showing two scenarios: a - weakly coupled, b - strongly coupled [perturbative unitarity bound in blue]

Results cont. - Heatmaps

Heatmap showing two scenarios: c - medium coupling, d - DM suppressed

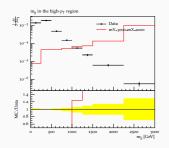
Results cont. - 95% CL contour

95% CL contour showing two scenarios: c - medium coupling, d - DM suppressed [perturbative unitarity bound in blue]

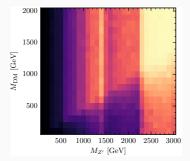
Conclusions and Outlook

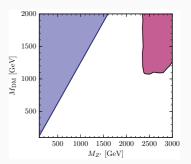
- Can utilize SM measurements as a test for BSM constraints, without any prior knowledge of the model
- Provide utility for model building **and** additional motivation for continued precision measurement programmes.

ToDo:

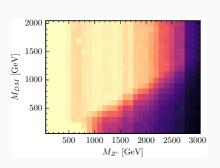

- Extended testing framework
- Include additional measurements as/when available
- Extend input compatibility, consider SUSY model frameworks

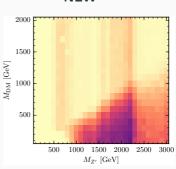
Thanks for listening

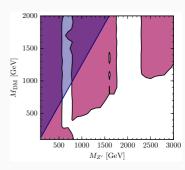

Backup

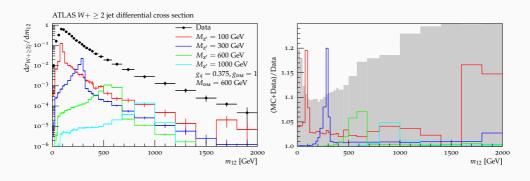

Update - 8TeV measurement

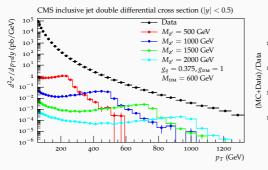
Noticeable dearth of 8TeV data unfolded and available, one measurement that was available but not included in original plots, ATLAS Z+Dijet 8TeV

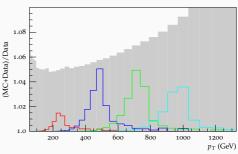

Default rivet output for a sample figure, **WARNING** normalised to total xs, 'undone' in the statistical process but not graphically yet.


Update - 8TeV measurement


OLD


NEW


Additional example measurements - W + Jets


ATLAS W+Jet 7TeV

Additional example measurements - CMS incl Jets

CMS Inclusive Jets 7TeV

